Math 206B Lecture 12 Notes

Daniel Raban

February 4, 2019

1 RSK: The (final) Final Chapter

1.1 Properties of generalized RSK

Theorem 1.1. $\Phi: P_{\nu}(\overline{d}) \to Q_{\nu}(\overline{d})$ is

- 1. piecewise linear,
- 2. volume-preserving,
- 3. continuous,
- 4. $\Phi: P_{\nu} \cap \mathbb{Z}^K \to Q_{\nu} \cap \mathbb{Z}^K$.

We had $\Phi = \xi_{(r_n,s_n)} \circ \xi_{(r_{n-1},s_{n-1})} \circ \cdots$, where $\xi_{(r_i,s_i)}$ is the PL map corresponding to removal of the (n + 1 - i)-th square in $A \in \text{SYT}(\nu)$. Last time, we showed that Φ is well-defined.

Proof. Invertibility of Φ follows from construction, since we can reverse the process.

To prove that Φ is piecewise linear, let ξ send $f(i, j) \mapsto \max\{f(i-1, j), f((i, j-1)\} + \min\{f(i+1, j), f(i, j+1)\} - f(i, j)$. Then ξ sends $f \mapsto \overline{f}$, so this is also volume preserving, as it has determinant ± 1 .

We now have to show that $\Phi: P_{\nu}(\overline{d}) \to Q_{\nu}(\overline{d})$; that is, if $M \in P_{\nu}(\overline{d})$ and $\alpha_c(M) = d_c$, then $\Phi(M) \in Q_{\nu}(\overline{d})$, and $\beta_c(\Phi(M)) = d_c$ for all c. We also need that if $M = [m_{i,j}]$ and $\Phi(M) = [m'_{i,j}]$, then if $m_{i,j} \ge 0$ and $m_{i,j} \le m_{i,j+1}, m_{i+1,j}$, then $m'_{i,j} \ge 0$. Let's show this 2nd part. We only need to understand this for when we change a corner:

$$\overline{f}(r,s) = f(r,s) - \max\{f(r-1,s), f(r,s-1)\} \ge 0.$$

To show that $\Phi : P_{\nu}(\overline{d}) \to Q_{\nu}(\overline{d})$, proceed by induction on each step. Suppose $\xi_{r,s}$ sends $M \mapsto \overline{M}$, where \overline{M} has share $\nu - (r, s)$. We only alter boxes on the diagonal, so $\alpha_c(M) = \alpha_c(\overline{M})$ for all $c \neq r - s$. Now let u = r - s. Then

$$\alpha_u(\overline{M}) = \alpha_{u+1}(M) + \alpha_{u-1}(M) - \alpha_u(M) + m'_{r.s}.$$

We also get, using inclusion-exclusion, that

$$\beta_c(M') = \beta_{c+1}(\Phi(M)) + \beta_{c-1}(\Phi(M)) - \beta_c(\Phi(M) - (r, s)) + m'_{r,s}$$

= $\alpha_{c+1}(M) + \alpha_{c-1}(M) - \alpha_{c-1}(M) + m'_{r,s}$
= $\alpha_u(\Phi(M)).$

Comparing these two equalities proves the property by induction.

1.2 Maximal sum over a path

Proposition 1.1. Let (r, s) be a corner of ν . Then $m_{r,s}$ is equal to the maximal sum over a path from (1, 1) to (r, s) in M'.

Proof. Look at the formula

$$m'_{r,s} = \overline{f}(r,s) = f(r,s) - \max\{f(r-1,s), f(r,s-1)\}.$$

Then we can prove this by induction.

When ν is a square, this is the corresponding property for RSK.

What is the moral here? We generalized RSK so far that we can prove all these properties from just two equations involving α and β . Later, we will approach RSK from a different angle, involving f^{λ} .